]

.
Py edtoy tE o o

i}

NASA TN D-1875

A2 /B

NASA TN D-1875

AMGC

TECHNICAL NOTE
D-1875

RESONANCE IN A COLD MULTICONSTITUENT PLASMA AT
ARBITRARY ORIENTATION TO THE MAGNETIC FIELD
By Eli Reshotko

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON July 1963







NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1875

RESONANCE IN A COLD MULTICONSTITUENT PLASMA AT
ARBITRARY ORIENTATION TO THE MAGNETIC FIELD

By E1l1 Reshotko

SUMMARY

The sensitivity of resonant frequency to the orientation of the propagation
vector has been examined for plasmas having both single and multiple ion species.
For propagation at right angles to the magnetic field, the hybrid resonances of
Auer, Hurwitz, and Miller and of Buchsbaum are obtained. However, at high plasma
density, if the direction of the propagation vector departs even slightly from
90°, each of these resonances shifts quickly to a higher frequency approaching
the next single species cyclotron frequency, and an additional resonance appears
at a frequency below the lowest single species cyclotron frequency. In the limit
of high plasma density, all the aforementioned resonances have the common proper-
ty that there is no net current in the direction of the electric field.

INTRODUCTION

The prospect of adding large amounts of energy to a plasma through resonance
excitation has led to considerable theoretical development of the resonance con-
ditions and power-transfer criteria as well as to a number of experimental ef-
forts to validate and enlarge upon the theoretical results. The present study,
while concerning itself entirely with a theoretical analysis of resonance condi-
tions, was undertaken in an effort to understand the experimental results of
reference 1, in which a peak in power absorption by a hydrogen plasma occurred at
a Trequency between the cyclotron frequencies of atomic and molecular hydrogen
ions.

It has been customary to examine primarily those resonances whose propaga-
tion vectors are either parallel or perpendicular to th= magnetic-field direc-
tion. Allis (ref. 2) has termed these "principal resonances." The resonances
for propagation parallel to thz magnetic field are at the cyclotron frequencies
of the species present. The transverse resonances at high plasma density are,
however, hybrid resonances (refs. 3 to 5) exhibiting interaction between the
various species present. Buchsbaum (ref. 5) has, in fact, suggested that in the
presence of more than one ion species excitation of transverse ion-ion hybrid
resonances would possibly heat the ions in a plasma preferentially over the elec-
trons.

The effectiveness of such resonance excitation in a laboratory plasma



depends on the accessibility of the resonance region to the wave, that is, the
ability of the externally imposed rf fileld to penetrate completely to the reso-
nance region. Such accessibility is provided by exciting the plasma with a wave
having a sufficlently small wavelength in the magnetic-field direction (see

refs. 6 to 8). Since the propagation vector of such a wave will, in practice,
have some longitudinal component, the wave can be regarded as purely transverse
only 1if the transverse component of the propagation vector is infinite corre-
sponding to zero transverse wavelength. More likely, the transverse wavelength
will be of the order of a cyclotron radius or greater, so that neither an infi-
nite propagation vector nor purely transverse propagation is really obtained.

The present investigation therefore seeks to determine the effect of wave-
propagation direction on the nature of plasma resonances. The sensitivity of
resonant frequency to_departure from purely transverse propagation will receive
rarticular attention.

In the analysis, the plasma is consldered to be collision-free with all the
species at zero temperature. This simple model of the plasma is sufficient to
bring out the aforementioned effects. Resonance is defined as occurring when the
index of refraction n - the ratio of the velocity of light to the phase velocity
of the wave - becomes infinite. In a laboratory plasma the index of refraction
at resonance will not bs truly infinite. It may, however, be sufficiently large,
so that in the dispersion-relation, terms of order l/n2 are negligible compared
to the leading terms. The developments herein are for the general case of multi-
ple ion species. Numerical results are given for two special cases; the first is
for a plasma consisting of electrons and a single lon species and the second for
a plasma consisting of electrons and two ion species.

RESONANCE DISPERSION RELATION
The propagation of waves in a cold, collisionless plasma has been treated in
about the same manner by a number of investigators (refs. 2 and 8 to 10). The

presentation herein follows the notation of Stix (ref. 8). The units are
Gaussian e.s.u.

General Dispersion Relation

The electromagnetic wave equation as obtained from Maxwell's equations is

. oy 4w 3] 1 %R
VX(VXE) +2§%+;§S;_=O (l)

i(k «r-wt)
JNEE

When speclalized to the case of plane waves of the form (i.e.,

Larter most of this report had been written, the author became aware of the
work of Yakimenko (ref. 12). Many of the developments and results of ref. 12 and
the present report are identical. However, the sensitivity of resonant frequency
to propagation direction in the neighborhood of 6 = 90° stressed herein is not
indicated in ref. 12.
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E = Ee ), it can be written

ax (axE) +Zj+E=0 (2)
where n = Ec/w is & dimensionless vector having the direction of the propaga-
tion vector k and the magnitude of the refractive index, namely, the ratio of
the velocity of light ¢ +to the phase velocity of the wave w/k.

For a cold, collisionless plasma, the current-density vector amplitude re-
quired in equations (l) or (2) is obtained by summing up the motiocns of individ-
ual particles:

-

j = E szkekevk (3)
k

where nj; 1s the number density of the xth species. The magnitude of the charge

of the kth species is Zye and its sign 1 is given by <€x. The velocities Gk
are obtained by solving the equations of motion (eq. (4)) for plane waves:

dvk~Ze E vkx§ )
mkﬁ-— kS k€ +'—C— (4

It is assumed that fluctuating magnetic fields are small compared with the im-
posed statig magnetic field By, so that B in equation (4) is adequately re-
placed by By. It i1s customary to consider the magnetic field to be in the
z-direction, so that By = EBO. By solving equation (4), the velocities Vk can
be shown to be

2 o
w k
- i€y, ——————— 0 E
k,x (,02 B 9'12{ k wz - 912{ X
1ce 0 oxX) 2
kK'k . k w
Y&,y | < B "k T oz Z - 02 0 Ey (5)
k k
Vk,z 0] 0 1 EZ

Let © Dbe the angle between n and Z and assume n to be in the x,z
plane (ny = n sin 9, ny = 0, n; = n cos 6). Upon substitution of the current-
density vector amplitudes (eq. (3)) into the wave equation (eq. (2)), the follow-
ing relation is obtained:

S - n2 c0526 -iD n2 cos O sin € Ex

iD S - n2 0 E, |=0 (6)
nZ cos 6 sin 8 0 P - n® sin®g E,



where

S = % (R + L) (7)
D = % (R - L) (8)

i3
L =1 - _k L 5 ) (10)
:E:: wf \& = Sy
k
T
P=1- — (11)
o
k
The quantity I, is the plasma frequency of the kth species defined by
4mn Zﬁe2
2 k
I = ——
k mye (12)
and {-. 1s its cyclotron frequency
Zn.eB
) = —2 (13)
mC

For a montrivial solution, the determinant of the matrix of equation (6)
must vanish. This yields the dispersion relation, which can be written in the
convenient form:

~P(n® - R)(n® - L)

tan?6 = (14)
s(nz -2 (2 - p)
S
Resonance Condition
Resonance occurs when the index of refraction becomes infinite (n2 - ),
The angle at which resonance occurs is then given by
2 I
tan“fpeg = - g (15)



For a plasma consisting of v different specles, the dispersion relation at res-
onance becomes

v v
(l+cot28res)w2 - z TI% COtZQI‘eS I I (wz -Qﬁ) - o? Z leg | ‘ (wz - Q}%.) =0
k Xk k k! £k
(16)
while the condition for charge neutrality can be written
T2
hid
S (17)
k

k
This relation is useful in algebraic manipulation and in reducticn of the dis-
persion relation.
LIMITING CASES OF RESONANCE DISFPERSION
RELATION AND THEIR SOLUTION

In general, for a plasma of v specles, it is apparent from equation (16)
that there are (v + 1) resonant frequencies. Exceptions occur at 6&regs = 90°
and in the 1limit of zero density where there are only v nonzero resonant fre-
quencies. The different limits are examlned herein.

Resonance at 0°

The dispersion relation (eq. (16)) at 0° becomes

v
wz-ZHi | |(w2-szi)=o (18)
k k

The Tirst factor representing Langmuir-Tonks plasma oscillations corresponds to
P =0 in equation (15). The resonances correspond to S —® and are at the
cyclotron frequencies of the v different species.

Resonance at 90°
The dispersion relation for propagation at right angles to the magnetic

field corresponds to setting S = O in equation (15) and for v different spe-
cies is written



ﬁ(wz - Qi) _Z 2 ﬁ (wz - Qi,) =0 (19)

K K k' #k
The hybrid resonances of Auer, Hurwitz, and Miller and of Buchsbaum are obtain-
able Trom this equation, as will be later shown. For v species, there are
(v - 1) lower hybrid resonant frequencies, and it is coavenlent to rewrite equa-

tion (19) in terms of the values of the lower hybrid frequencies in the limit of
high plasma density aLH,m:

TVT((DZ - a2) - an ﬁ(wz ca2y ) =0 (20)

K K n

In an electron-ion plasma, the upper hybrid resonant frequency occurs much above
the ion-cyclotron and lower hybrid frequencies and is well approximated by

why = 08 + T2 (21)

regardless of the ionic composition.

Resonance in Limit of Zero Density

In this limit, the dispersion relation (eq. (16)) becomes

T -8)- e

k
yielding resonances at the individual species cyclotron frequencies regardless of
the angle of wave propagation.
Resonance in Limit of High Plasma Density
When the dominant terms in the dispersion relation are those involving the

plasna frequency (and, of course, it is the electron plasma frequency that is
greatest), the dispersion relation (eq. (16)) can be abbreviated

v 1%
§ -2 2 I l 2 _ o2 2 § 2 2 _ a2\ _
Hk cot eres QD Qk) + o Hk QD Qk) =0 (23)
K k k k'#k

Equation (23) yields v resonant frequencies except at Opres = 90°, where there
are (v - 1) nonzero resonant frequencies. Thus, one of the resonant frequencies



has been lost in the process of reducing the dispersion relation (eq. (16)) to
equation (23). Thils solution must be obtained directly from equation (16). The
pertinent frequency from equation (16) for an electron-ion plasma is the higher
solution of

21 .2 z 2 202 2 —

w®laf - (Qe + ne) + 208 cos®f g = O (24)
Equation (24) was obtained from equation (18) by taking w? >> 0;0, and by drop-
ping terms of the order of the electron- to ion-mass ratic compared to unit order
terms. This frequency is the upper hybrid frequency, which in the case of an
electron-ion plasma at Opeg = 90°, occurs at the frequency of equation (21).

The other rescnant frequencies are readlly obtainable from the form of equa-
tion (23) by incorporating the lower hybrid frequencies wry , of equation (20):

v v-1l
2 l | 2 2 2 I ‘ 2 _ -
cot Qres (m - Qk) + w QD aiH,m) =0 (25)
k m

At Brpeg = 90°, the resonant frequencies are the (v - 1) values of wyy. How-
ever, for Opegg # 90°, an additional resonance is obtained. This occurs at a
frequency below the lowest single species cyclotron frequency and 1s approxi-
mately given by

N
Ky

V=

(26)

2
1 + tanfpeg ———————

?)

wnere ka is the lowest single species cyclotron frequency.

1
(0%,0)
1% (Q
Kok

PHYSICAL ASPECTS OF RESONANCE

The discussiocn so far has dwelt on the dispersion relation and its solu-
tions. For a better understanding of the physical nature of the resonances, in-
vestigation is made into the relation between the propagation vector, the
electric-field vector, and the particle velocities and resultant current densi-
ties.

"Electrostatic" Nature of Resonance

At resonance, the propagation vector is in the electric-field direction.



This has been shown by many people in numerous ways. One approach is to examine
the last two lines of equation (6). In the limit of n - ©, these lines may be
written

E, = 0 (27a)

E P
== ( - —é) (27b)
X Z n

ps

In the limit n% - o, that is, for resonance at other than exactly 0°, it is
apparent that E is parallel to n. The term "electrostatic" is applied to res-
onance in the sense that, at resoﬁance, the oscillating magnetic field is zero
and the oscillating electric field is curl-free. Thus, the electric field at any
instant is determined entirely from electrostatic considerations.

Current-Density Vector at Resonance

Following the arguments used in the development of equations (3) to (6), the
particle current-density vector ] may be written

S -ip o\ /B
(i) ~
= |ip g 0 28
4rl * Ey ( )
0 0 P E

In this equation, the quantities S and P are just the S8 and P of equa-
tions (7) and (11) with the vacuum-displacement-current term (the 1 in egs. (9)
to (11)) omitted. At resonance, since E 1s parallel to n and n is taken
to be in the x,z plane, then is zero. Thus, all three components of the
current density exist with jy being a Hall current depending only on E,.

Furthermore, in the limit of high plasma density (Hz/a? >> 1), it can be
shown that the component of the current density in the electric-field direction
vanishes for all lower hybrid resonances. This 1s shown as follows: In the
limit of high plasma density, the displacement current is small compared to the
particle current density | and so the resonant condition (eq. (15)) may be
approximated:

tang

mltg

res (29)

With Ey = O, equations (28) and (29) indicate that

2These remarks do not apply to the upper hybrid resonance, since from
eq. (21), HZ/Q%H < 1. The symbol 12 without subscript here represents 2% HE.
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. w3 2 2 2
4+ E=ox P(fcot OpesEx + Ez) (30)

But, since n 1is parallel to &,

2 2
) ny; £
cot®Opag = =5
ny By
and
j-E=0 (31)°

This is a generalization of the argument presented by Auer et al. (ref. 4),
Allis (ref. 2), Buchsbaum (ref. 5), and Stix (ref. 8) in their description of the
physical attrioutes of resonance at 90° to the magnetic field. The argument of
the aforementioned references is a neutralization argument. For the electron-ion
hybrid resonance, it is shown that, in the direction normal to the magnetic
field, the electrons and ions have identical motions and so neutralize each
other. For the ion-ion hybrid frequencies (ref. 5) the different species of pos-
itive ions move away from each other in order to maintain charge neutrality. In
both cases, it is obvious that there is no net current in the electric-field di-
rection and so j « E vanishes at these resonances. In the examples that follow
it is shown that, in the limlt of high plasma density, the frequencles for reso-
nance at an arvitrary angle to the magnetic field including that of equation (26)
can be obtained from the statement J - E = O.

A remark 1s in order at this point concerning the relation between the
aforementioned statement Jj - E = O and the ultimate objective of resonance ex-
citation, namely, plasma heating. The statement J . E = O, as used herein, is

3Tn obtaining eq. (29) from eq. (15), the substitutions P =P, 5 =5 were
made, which are tantamount to saying that ’P > 1, ]S, >> 1. These magnitudes
are correct except for resonance at exactly © © to the magnetic field, where the
resonant condition from eq. (15) is S =0 or S = -1. From eq. (20) it is evi-
dent that

v=1
2 2 2
® Gb - wLH,m)
S =P m
v
-4
k

~

wnere P can be arbitrarily large. At high plasma density, S is also arbitrar-
ily large except at the m values of the lower hybrid resonant frequency, and
these are, in fact, the frequencies for which j + E =0 for Opeg = 90°.

w0



not related to power transfer to the plasma, since, from equation (30), it is the
reactive portion of j . E that has been considered. In the absence of colli-
sions there is no steady-state power transfer to a cold plasma. The power trans-
fer comes from the resistive portion of j . E, which, in the limit of few colli-
sions, is of order (vc/w) where ve 1s a representative collision frequency.

The effect of collisions on the resonant frequency is even smaller being of order
(vcﬁw)z. These collisional effects are not considered further. The remainder of
the report is again devoted to resonance in a cold, collisionless plasma.

Particle Kinetic Energy at Resonance

8 )
v 2

The kinetic energy of the kth species per unit volume is Uy = >

2

" is the mean square velocity. From equation (5), this can be shown to

where v
be

U

Zzezn wZQwZ + 92>
k- "k k ( >
= E; +

K7 am o sz } 92>2 E§> - E; (32)

k

At resonance, since Ey = 0, this can be written

. 2€e?E2n, [;?(a? + Qﬁ)
k:
40 L(wz - Qi)g

Immediately apparent is the tendency of the kbh speclies to acquire a very domi-
nant portion of the total kinetlc energy as the resonant frequency approaches its
cyclotron frequency.

+ cot?O e (33)

EXAMPLES

To illustrate some of the aforementioned resonance characteristics and to
derive some additional ones, two different cases will be treated. The first is
for a plasma consisting of electrons and a single ion species. The second will
be for a plasma of electrons and two lon specles. Numerical examples are pre-
sented in each case.

Plasma with Single Ion Species

For a plasma with a single ion species, the neutrality condition (eq. (17))
is simply H%/Qi = Hg/ﬂe. The resonance condition (eq. (16)) then becomes

2 2 2 2 2 2 2 2 2 2 (12 2 2
[(14+cot ere;)w - (He + Hi>cot Gre%}éb -Qi>QD -Qe> - (He-+Hi)<w - Qegi) =0

(34)

10 E-2046



In the low-density limit of = 0, Q%

¢, 9% regardless of the orientation of
resonance.

2
Under the condition Hgﬂg coszeres/(ﬂg + Qg) << 1, the upper hybrid reso-

nance is given approximately by

202
2 2 2 e e 2
w® = Q% + 112 - cos®o (35a)
e e (HZ . QZ res
e ej
and in the 1limit of high plasma density becomes
2 _ 12 2 2
o =I5 + 0% sin6 (35b)

The lower hybrid resonant frequencies In the limit of high plasma density are
approximately

w? = 049 sinzereS + Qg coszeres (36)
and
o
02 = — (37)
L 2
1 + —Q.e- tan eres

The approximations made in obtaining equations (35a) to (37) from equation (34)
are all of the nature of neglecting terms of the order of the electron- to ion-
mass ratio compared to unity. At Opeg = 900, equation (34) has an approximate
solution '

4
o QiQe + I
W =04l \ T
Qg + T

that, at high plasma density, becomes 0f = 14Qe. This is the hybrid frequency
of Auer et al. (ref. 4), and its high plasma density limit can be obtained also

from equation (36) for Opeg = 90°.

In accordance with the promise of the previous section the resonances of
equations (36) and (37) will be obtained from the statement Jj +« E = 0. The
x and z components of current density from equations (3) and (5) are:

icnee g N g

ix = g Ex (38)
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. lenge | &y 0
iz =g —= +— |E, (39)

In these expressions, the ion and electron contributions are readily discernible,
and 1t is evident that the longitudinal current density Jz 1s primarily an
electron current density. Equations (38) and (39) may also be written

icn.e cn@ﬁ - 0:0 )
Jx = —= (91 + Q) - < Ey (38a)
B [ - Y - o)
i e
ien e
. e 1
Jg, = By (Qj_ + Qe) ':EJ E; (593)

The "neutralization", argument (j, = O) for the resonance of Auer et al.
(ref. 4) at w = (Qiﬂe)l/2 is quite apparent from equation (éBa); The variation
of this_frequency with resonance direction as obtained from J . E = O with
wf >>0f is

2 2ne
o Q0B + QgED

[4V]
EZ + EC
X Z

(40)

and since resonances are "electrostatic" (n is parallel to E) equation (40) is
identical to equation (36).

For the low-frequency resonance (mg << QiQe), it is to be noted from equa-
tions (38) and (39) that Jjy is primarily ion current, while Jz is still pri-
marily electron current. From the condition J - E=0 1in this frequency range

(41)

which is equivalent to equation (37).

As & numerical example, the resonant frequencies for an atomic hydrogen
plasma are obtalned by solving equation (34). The results for several resonant
directions are shown in figure 1. Immediately noticeable is the rapid upward
shift in resonant frequency at high plasma density as the resonance direction
acquires a slight longitudinal component. This is shown more graphically in fig~
ure 2. Each resonant frequency approaches a limiting value of the next single
species cyclotron frequency. The lowest resonance resches ion cyclotron fre-
quency at 8n..q &~ 85°, while that corresponding to the electron-ion hybrid reso-
nance does not closely approach the electron cyclotron frequency until
Oreg < 109,

12



The particle kinetic energies are also quite sensitive to propagation angle.
For example, the ratio of electron to ion kinetic energies for the electron-lon
hybrid frequency (e3. (38)) is approxirately

2
= zi<1 +2 59- cot29> (42)

Gl

i i

The equality of electron and ion kinetic energies for the transverse hybrid reso-
nance (6 = 90°) in an electron-proton plasma is well known. With departure of
the propagation vector from 90°, the ratio increases sharply shifting all the
enerzgy to the electrons as the electron cyclotron frequency is approached. For
the low-frequency resonance of equation (37),

Q

O
1 e 2
U 1+ =+ 5= cot™0hag
Ye e M1 (23)
Ui - oL Qe o Qi Qe 5
1 + 'Q—l' cot Gres 1 + ﬁ; + 2 @‘]‘: cot Gres

For an electron-proton plasma in the limit Opag 90°, the energies from equa-
tion (43) are split equally between the species. This result arises because the
frequency o (from eq. (37)) and the longitudinal electric field E, both ap-
proach zero as cot Opeg. Thus, the electron energy in equation (43) is prima-
rily from the longitudinal electron velocity component Ve,z¢ If, however, the
longitudinal electric fleld X, is strictly zero, then as w = O, the kinetic
energies for transverse resonance are divided in proportion to the masses, since
each species is essentially undergoing E X B drift. With departure of the
propagation vector from 90°, the resonant frequency increases sharply, and the
ions acguire all the energy as the ion cyclotron frequency is approached.

Plasma with Two Ion Species
The two ion species are given the subscripts 1 and 2 and it is assumed that

17 > flp. Their relative charge concentrations are x7 = Zlnl/ne and
Xp = Zono/ng. For this plasma, the resonance condition (eq. (16)) is written

2 2 2 2 2 2 2 2 2 2 2 2
[(l + cot Qres>w - (He + Hl + H2>cot Qre%]éb - Ql><m - QZ)Cm - Qe)

W2 5 o\ [ o .
e 2 2 2 2
- Qe [Xlﬂléb - Qz)(Q - Qe> + Xzﬂz(b - Ql)(m - Qe>

+ Qe(wg - QE)QbZ - Q%)} =0 (a4)

A more convenient form of this equation 1s the one written in terms of
Buchsbaum's hybrid resonances (ref. 5). Terms of the order of the electron-ion
mass ratio compared to unity are dropped: this yields

13



(10000 ) - 77 00, (- 59) (o - 8) o -2) - 2o - 2) (o2 - 5E) =
(45)

wnere the purely transverse hybrid resonances at high plasma density are (from
ref. 5) the electron-ion hybrid

0% = 0 (x0 + x505) (46)
and the lon-ion hybrid
o XlQZ + xzﬂl
Oy = 8y o= (47)
Xphy o Xpie

In the low-density limit, WP = 0, Q%, Q%, Qg regardless of the orientation of

resonance. The upper hybrid resonance in the approximation here considered is
independent of the number of ion species involved and so is given by equa-
tions (35). The lower hybrid resonant frequencies in the limit of high plasma
density are approximately

2 _ 02 o3.2 2 2
w” = Qa sin~8 + Qe cos”H

res res

020l
QZ .2 b

tanze
res

wé = 5 (49)

and

WP = (50)

For O.eg = 90° Buchsbaum's rescnances are, of course, recovered from equa-
tions (48) and (49).

These resonances are now reexamlned from the viewpoint of 3 - E = 0. The
x and =z components of current from equations (3) and (5) are

_— icnee Xl(llﬂl N Xz(lﬂz N (L.Qe E
Jx = 78 2 _ o2 o2 _ gt
1 2

(51)
(e} w w



ien_e | x40 X80 Q
3 = e 171 + 272 + & lx
z Bo w w T

(52)

First, the arguments for the resonances at right angles to the magnetic
field are reviewed. The conditions for Jy = O are sought. The first situation
occurs where the velocities of the two ion species are in the same direction as
the electron veloeity. Species 1 will lead the electrons and species 2 will lag
the electrons, but in such a manner that the charge density weighted average
velocity of the two ion species is the same as the electron velocity. As both
ion species move in the same direction, the resonant fre%uency must be above the
higher ion cyclotron frequency. Setting jX =0 for w* > Q Q% results in
the resonant frequency g as given by equation (46). The second situation
where Jx » O occurs when the two ion species move in opposite directions in the
presence of almost stationary electrons. The resonant frequency should be much
below the electron cyclotron frequency and in fact must be between the two ion
cyclotron frequencies. It is obtained by equating the first two of the terms in
the bracket of equation (51) and is found to be the ion-ion hybrid frequency @y
of equation (47).

An approximate generalization of these results for (v - 1) ion species is
for the electron-ion hybrid

v-1
0% = g %, 0 (53)
a X'k
1
where
v-1 v=-1
7o n
Kk
E X = E — =1 (54)
e
1 1

and for the ion-ion hybrid of two species j and k whose cyclotron frequencies
are adjacent

Q2 = Q.0 fizk_i_fkﬁi

(55)
Js) Jk XJQJ + %8y

In writing equation (55), it is assumed that the other lon species as well as the
electrons have negligible velocities in the frequency range between Qj and Qk'

The electron-ion hybrid frequency in the limit of high plasma density is
obtained from j + E =0 with f >> 02, that is
2
X9+ Xofl Q Q.F
o [ 11 22 + e } E2 4+ €2 _ ¢

2 . 0% W

(1)2 98] ps
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This yields

‘2 X e Z (
o = —— 56)
EZ + EZ
x z
which is identical to equation (48), since at resonance, n is parallel to E.

The other two resonant frequencies can be derived from the statements of
- E=0 for (s <w<{) and w<L iy, respectively. These are

X8 Xoil 0

w| ==t ¢ B ES + — E = O
o - a2 2 - al @

1 1
and

x- 0 piony! Q

ol 2L+ 222 g2 4 €52 .0
2 Rk |x T e

The detailed arguments will not be given again, but if they are carried through
will yield equations (49) and (50), respectively.

The numerical example in this case 1s of a plasma consisting of electrons
and equal concentrations of atomlec and molecular hydrogen ions. The results of
solving equation (44) for several resonant directions are shown in figure 3. The
upper hybrid frequency is agaln only slightly affected by the direction of wave
propagation. The electron-ion hybrid resonance frequencies for different propa-
gation directions are almost identlcal to those with single ilon species except
for angles approaching 90° where the effect of ion composition becomes discerni-
ble.

The ma jor differences between multiple and single ion species occur at low
frequencies where the ion-ion hybrid frequencies appear. Here the rapid upward
shift in resonant frequency with slight departure of propagation angle from 90°
i1s noted. For & < 659, the resonances are effectively at the respective cyclo-
tron frequencies of the ion species present regardless of the relative concen-
trations of these species. The lower hybrid resonant frequencies at high plasma
density are shown in flgure 4, which confirms very graphically the trends already
described.

The distribution of kinetice energy per unit volume for the transverse
(6 = 20°) electron-ion hybrid resonance (w = 0,) is
Ug # Up 0 Up = (3909 + x505) : %18 1 %00, (57)

showing equal distribution of energy between ions and electrons. For the assumed
plasma (50 percent Ht, 50 percent Hg), the energy distributions are in the ratio



With slight departure of the propagation vector from 90°, the electrons rapidly
acquire an increasing share cof the total energy such that for +an?6 < Qé/ﬂg

z
U Q
e e 2
—_— o P — cot%s (58)
Ul + U‘Z Qg res

The kinetic-energy distribution for the transverse ion-ion hybrid resonance
at o= Oy (eq. (47)) is in the ratio

1 (Q% * 99 (kaa * Q%)
Ue : U3 : Ug =g~ ¢ x101 3 ¢ xpflo = (59)
e (Qz } Qz> (Qz ) Qz)
1 b b 2
wnich for the assumed plasma 1is
1 1 1
Ve # U1 V2 =516 2 7 3

The electrons here have a miniscule portion of the total kinetic energy. With
departure of the propagation vector from 900, their (electrons) share and that of
the molecular ions (U?) decrease sharply as the atomic ilons acquire more of the
total energy, since the resonant frequency (eq. (49)) is approaching the atomic-
ion cyclotron frequency.

For the low-frequency resonance of equation (50) in strict transverse propa-
gation (6 = 90°, E; =0, w~ 0), the particle energies for the assumed plasma are
. . . g 11,2 :
in the ratio of their masses, U, : U ¢+ Us = 5508 ‘' 3 ° 3 Here, with departure
of the propagation vector from 90©, the resonant frequency increases very rapidly
to that of the molecular hydrogen ions and this species acquires an ever-

increasing share of the total energy.

Discussion of Examples

Both examples show the great sensitivity of resonant frequency and particle
energy distributions to the direction of propagation especially in the neighbor-
hood of @ = 90°. Departures by a fractlon of a degree are significant and a
departure of the order of 2° may cause an immense change in resonant frequency
and in the distribution of particle energies.

Because of this sensitivity to propagation direction, the identification of
an anomalous resonant frequency with a particular plasma composition for an
assumed propagation direction (usually transverse), as done in reference 1, is
subject to question. Unfortunately, the ldentification of the resonant direction
is usually difficult. Buchsbaum (in a private communication) feels that in his
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own experiments (ref. 11) he has transverse resonance, since he obtained almost

identical results using excitation coils of two different wavelengths. This is

seemingly a good test for transverse propagation; however, Buchsbaum was never-

theless somewnat unsuccessful in identifying a plasma composition that would ex-
plain his results.

Regardless, the attractiveness of excitation of ion-ion resonances for ob-
taining ion heating without electron heating is very evident.

SUMMARY OF RESULTS

The effect of the orientation of resonance with respect to the magnetic
field has been analyzed for a cold, collisionless plasma. Certain results are
obtained which are especially interesting when compared with the descriptions of
transverse resonance (at 6 = 90°) by Auer, Hurwitz, and Miller and by Buchsbaun.

Except for resonance in the magnetic-field direction (6 = 0°), the electric-
field wvector is parallel toc the propagation vector as is well known. It is then
shown that at high plasma density all such resonances (6 ¥ 0°) have the common
property that there is no net current in the direction of the electric field.
This i1s a generalization of the "neutralization" description of the transverse
plasma resonances.

At high plasma density, with even slight departure of the propagation vector
from the transverse direction, the resonant frequencies shift quickly upward from
thelr transverse values approaching the next single species cyclotron frequency.
An additional resonance appears at a frequency below the lowest single species
cyclotron frequency and ravidly approaches that frequency. Because of the sensi-
tivity of resonant frequency to propagation direction as well as plasma composi-
tion, bvoth of these factors must be carefully considered in identifying experi-
mental results.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 2, 1963
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APPENDIX - SYMBOLS
magnhetic-field strength
imposed static magnetic-field strength
velocity of light
2 (r-1)
electric field
electronic charge
current density
propagation vector (wave number)
eq. (10)
particle mass of kth species
index of refraction
number density of kth species
eq. (ll)
eq. (9)
spatial variable
2 (R+1)
time
kinetic energy per unit volume of kth species
veloclty
species concentration
coordlinate directions
charge number of xth speciles
sign of charge of xth species
direction of wave propagatlion relative to magnetic field

number of species in plasma
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Vo cellision frequency

My plasma frequency of kth species

Oy cyclotron frequency of kth specles

w frequency of wave

Subscripts:

e electron

i ion

k referring to kth species

LH lower hybrid

res resonant

UH upper hybrid

X,V,2 components in coordinate directions

1 ion specles 1

2 ion species 2

{ component parallel to magnetic field (z-component)
il component perpendicular to magnetic field (x-component)
() vector amplitude

Superscript:

->

()

vector
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Figure 1. - Resonant frequencies in an electron-proton plasma.



Dimensionless resonant frequency, w/QH+
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Dimensionless resconant frequency, w/QH+
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